MODERN REPRODUCTION

10/23/2023

NEWSLETTER

This newsletter centers on reproductive topics with a genetics focus. If there is an organization or upcoming webinar you'd like me to include in a future newsletter, please feel free to reach out at genetics@modernreproduction.org.

Sign up for the newsletter <u>here</u>

Webinars

SGNIPT FOR RECESSIVE CONDITIONS IS HERE TO STAY

October 25, 2023 @ **5** pm ET

Register

AN INSIDER'S GUIDE TO CLINICAL TRIALS

October 26, 2023 @ **2:00** pm ET

Register

ISSUE 17

NEWSLETTER *The little lit review*

Incremental yield of whole genome sequencing over chromosome microarray and exome sequencing for congenital anomalies in prenatal period and infancy: systematic review and meta-analysis

N. Shreeve, C. Sproule, K. W. Choy, Z. Dong, K. Gajewska-Knapik, M. D. Kilby† & F. Mone

WHO: 18 studies encompassing 902 cases with congenital abnormalities that were or would have been identified prenatally; cases included fetuses, neonates and infants (up to one year of age)

OBJECTIVES:

Determine the incremental yield of WGS over CMA and/or ES
Evaluate the turnaround time (TAT) and quantity of DNA required for testing using WGS and ES.

Findings:

- The clinical genetic syndrome most commonly identified was Noonan Syndrome
- Incremental yield was greatest for the postnatal cohort with CMA analysis at 39%, prenatal cohort with CMA analysis at 16%, and exome sequencing cohort at 1%
- WGS appears to require less DNA than a stepwise testing strategy (QF-PCR/Gbanding karyotype – CMA – ES) and potentially provides results in a shorter timeframe to facilitate decision making (though these were research WGS and commercial WGS may have different TAT); however, CMA and ES pathway utilizes less fetal DNA and has potential faster turn-around-times although it is associated with more VUS.
- Pediatric population may have greater yield as prenatal phenotyping is more difficult and affected by evolving fetal phenotypes

What variants are detected with WGS over WES?

intronic variation, repeat expansions, pathogenic copy number variants (CNVs) with greater resolution than that of CMA, structural DNA alterations and mitochondrial disorders

ISSUE 17

NEWSLETTER *The little lit review*

Unexplained Female Infertility Associated with Genetic Disease Variants

Michael P Dougherty, Alexandra M Poch, Lynn P Chorich, Zoe A Hawkins, Hongyan Xu, Robert A Roman, Haitao Liu, Soumia Brakta, Hugh S Taylor, James Knight, Hyung-Goo Kim, Michael P Diamond, Lawrence C Layman

Of the paper's population of 197 patients with unexplained infertility, 6.6% or 13 patients had likely pathogenetic or pathogenic variants in one of ACMG's 59 actionable genes after whole exome sequencing (WES). The first question is: what's the chance that someone in the general population would have a likely path or path variant in one of these genes? Of the nearly 50,000 people in the UK biobank and 20,000 in eMERGE biobank, the percents are 2% and 2.5%, respectively.

The authors included additional genes not among ACMG's 59 actionable genes. 10.6% of their cohort were identified to have LP/P variants in these genes. The authors state, "our findings support a genetic link between infertility and future medical illness."

Table 1.

Medically Actionable Genes with Pathogenic or Likely Pathogenic Variants Identified in the Study Population.

Gene	Genetic Disorder	Risk	PMID [*]	
BRCAI	Breast, ovarian, and pancreatic cancer	Breast cancer, 40–87%; ovarian cancer, 16–86%; pancreatic cancer, 2.5%	28632866 (breast and ovarian), 35077220 (pancreatic)	
BRCA2	Breast, ovarian, and pancreatic cancer	Breast cancer, 27–84%; ovarian cancer, 13–32%; pancreatic cancer, 2.5%	28632866 (breast and ovarian), 35077220 (pancreatic)	
MYH11	Aortic dissection	17%	17666408	
GLA	Fabry disease (cardiac, cerebro- vascular, and renal)	Neuropathic pain, 64%; kidney impairment, 33%; end-stage kidney disease, 1%; transient ischemic attack or stroke, 27%; tinnitus and hearing loss, 47%; gastrointestinal symptoms, 53%	15025684	
PKP2	Arrhythmogenic right ventricular dysplasia or cardiomyopathy	11-47%	17010805	
KCNQ1	Familial atrial fibrillation; long QT syndrome	Long QT syndrome, 73%; sudden death, 9.5%	12702160	
SCN5A	Six different cardiac arrythmias; the Brugada syndrome	Syncope, 22-30%; sudden cardiac death, 10-20%	27472692, 27566755	
RYR1	Central core disease of muscle; malignant hyperthermia	Malignant hyperthermia, 40.6%	31206373	
APOB	Familial hypercholesterolemia	Hepatic steatosis, nearly 100%; severe hepatic steatosis witl occasional progression to cirrhosis, 5– 10%	33983694	
CACNAIS	Hypokalemic periodic paralysis	Hypokalemic periodic paralysis characterized by low potassi- um, myopathy, and recurrent episodic paralysis, 84–100%	15098604	

ISSUE 17

NEWSLETTER *The little lit review*

Unexplained Female Infertility Associated with Genetic Disease Variants

Michael P Dougherty, Alexandra M Poch, Lynn P Chorich, Zoe A Hawkins, Hongyan Xu, Robert A Roman, Haitao Liu, Soumia Brakta, Hugh S Taylor, James Knight, Hyung-Goo Kim, Michael P Diamond, Lawrence C Layman

No.	Gene	Cytoband	HGVS Coding	- Protein change	Variant type	Affected Exon	Gnomad Frequency (%)	ACMG Call	Race
1	ALPL	1p36.12	c.1363G>A	p.Gly455Ser	Missense	12 of 12	0.041	Р	Caucasian
2	ANXA11	10q22.3	c.112G>A	p.Gly38Arg	Missense	38 of 506	0.008	Р	Caucasian
3	ATM	11q22.3	c.3538del	p.Val1180Ter	Stop gained	1180 of 3057	0	Р	Caucasian
4	BEST1	11q12.3	c.404C>T	p.Ala135Val	Missense	4 of 9	0.04	Р	Caucasian
5	C1QTNF5	11q23.3	c2366+1G>A	-	Splice site	- 0.003		Р	Caucasian
6	CFHR5	1q31.3	c.678del	p.Glu226AspfsTer7	Frameshift	5 of 10	0.001	Р	Black
7	CLCN7	16p13.3	c.2299C>T	p.Arg767Trp	Missense	24 of 25	0	Р	Caucasian
8	DUSP6	12q21.33	c.566A>G	p.Asn189Ser	Missense	2 of 3	0.068	Р	Caucasian
9	ERCC6	10q11.23	c.3607_3608insGG GCTGGCTGCTTAA GGTCCACCTTA	p.Lys1203ArgfsTer3 3	Frameshift	18 of 21	0	Ρ	Caucasian
10	GBA	1q22	c.1226A>G	p.Asn409Ser	Missense	10 of 12	0.27	Р	Black
11	IMPG2	3q12.3	c.3023-6_3030dup	p.Ala1011PhefsTer2	Stop gained	15 of 19	0.002	Ρ	Caucasian
12	KCNJ11	11p15.1	c.185C>T	p.Thr62Met	Missense	1 of 753	0	Р	Caucasian
13	MEF2A	15q26.3	c.836C>T	p.Pro279Leu	Missense	8 of 11	0.118	LP	Caucasian
14	PKD1	16p13.3	c.12391G>T	p.Glu4131Ter	Stop gained	45 of 46	0.003	Р	Asian
15	PSEN1	14q24.2	c.617G>C	p.Gly206Ala	Missense	7 of 12	0.051	Р	Caucasian
16	RAD51C	17q22	c.577C>T	p.Arg193Ter	Stop gained	4 of 9	0.004	Ρ	Caucasian
17	SLC25A4	4q35.1	c.523del	p.Gln175ArgfsTer38	Frameshift	2 of 4	0	Р	Caucasian
18	TTN	2q31.2	c.73254_73255del	p.Glu24419llefsTer2	Stop gained	276 of 313	0.017	LP	Caucasian
19	TTR	18q12.1	c.424G>A	p.Val142Ile	Missense	4 of 4	0.59	Р	Black
20	VWF*	12p13.31	c.2561G>A	p.Arg854GIn	Missense	20 of 52	0.9	Р	Caucasian*

Table S5: AD pathogenic variants not included in the 59 MAG genes, which could affect health. 20 P/LP variants were identified in 21 individuals.

What's considered unexplained infertility?

Healthy couple, >1 year, normal uterine cavity, 1 patent fallopian tube, >9 menses/year, motile spern count >5 million in the ejaculate

NEWSLETTER

Community Content:

			Affording care \rightarrow	Resources and support \rightarrow
Fertility Journey	Fertility challenges	Your first consultation	Evaluating infertility	Planning your treatment

This week's community content spotlight is for <u>Fertility Journey</u> - a straightforward, quick overview of the fertility process.

Modern Reproduction Content:

- www.modernreproduction.org